熟練工が1週間かかる→AIは1日で作業完了 三菱電機と産総研、FA分野で活用 (2/3ページ)

製造機械のパラメーター調整にAIを活用

製造機械のパラメーター調整にAIを活用

 レーザー加工機を用いた板金の切断加工では、経験の少ない従業員でも熟練工と同等の加工品質を維持できるよう、加工面の品質判定を画像認識AIがサポート。熟練工が目視で判断していた加工面のキズ、上面荒れ、溶融付着など5つのポイントをAIに判定させた。問題がある場合は、レーザーの焦点位置や加工速度、ガス圧力などあらかじめ設定された条件をAIが自動調整しながら最適な条件を見つける。

 本来、ディープラーニングには数千~数万枚もの学習用データ(画像)と膨大な計算処理が必要になるが、画像特徴量の1つである「高次局所自己相関特徴」(HLAC)に注目したことで、必要な学習データ数と学習のための計算量の削減に成功したという。これに熟練工が蓄積してきた加工知識を合わせ、AIの学習効率を上げたとしている。

レーザー加工ではAIによる画像判定を活用

レーザー加工ではAIによる画像判定を活用

 組み立て作業を行う産業用ロボットの「異常判定」もAIで自動化した。組み立て作業では力覚センサーでロボットに異常がないかを常時監視する。部品の欠損や異物混入などがあった場合はセンサー出力の波形が乱れるという。

「現場が一番頭を悩ませていた分野」に光